Ag-paste based ultra-fine line metallization by pattern transfer printing (PTP™)

Jan Lossen, Adrian, Dominik Rudolph, Stefan Hörnlein, Ansgar Mette, Misha Matusovsky, Amir Noy, Vinodh Chandrasekaran, Matthias Hoerteis and Giora Dishon
Why to reduce Silver?

- Assuming a 25% annual growth, PV industry soon might become the largest consumer of Ag
- Further growth of PV can be limited by growth of Ag-Production
- Sustainability and costs in thread

From Pierre Verlinden, Moving to Terawatt levels of annual solar cell production: aligning research, technology & production roadmaps
PV CellTech 2018, Penang 13-14 March, 2018
ITRPV Roadmap

• Ag will remain main metallization material in c-Si technology for the next years

• Ag price accounts for a significant part of cell conversion costs (~30%)

• However, ITRPV predicts only a moderate decrease of Ag consumption

From Markus Fischer, ITRPV 9th edition 2018 - report release and key findings
PV CellTech 2018, Penang
Optimum finger width

Which finger width would give the highest efficiency?

- Answer depends on the number of BB and on the achievable aspect ratio (AR)
- With more BBs and higher AR finer fingers are favorable
- For 6BB and AR 0.5 the optimum fingers width is below 20µm

Simulation for 6BB PERC cell

Griddler 2.5 Pro Simulation

Input Parameter:
- IV and recombination parameters of 6BB PERC cell
- Assumption of fixed finger sheet res.
- Finger width: 15 … 35 µm
- Finger #: 100 … 150 fingers

Results:
- Significant eta increase possible
- Optimum shifts for smaller finger width to a higher number of fingers
- But, the shaded area of fingers still is reduced, J_{sc} and V_{oc} are increased
Pattern Transfer Printing

Working principle

1. Creation of a negative image of the desired pattern into a polymer substrate (e.g. deep trenches)
2. Filling of the trenches with standard Ag paste
3. Transfer of pattern by laser irradiation (in one piece/shot) to the wafer
Pattern Transfer Printing

Sequence of pattern transfer printing

- Trenches in tape are filled with Ag paste
- The tape is positioned in proximity to the wafer
- Irradiation of laser light through the transparent tape
- Evaporation of solvent at the interface
- Overpressure accelerates paste towards wafer
- As a laser with a very high scanning speed of 200 m/s is used, a complete finger is deposited in “one piece”
Pattern Transfer printing
Experimental
- PERC precursors from pilot line of Hanwha Q Cells in Germany
- SP reference with 30 µm opening, 380/14 mesh
- Paste: two modification of Heraeus 9651B

Finger geometry
- No mesh marks with PTP
- Line width ~ 25 µm
- Height ~ 10 µm
- AR 0.4 – 0.5
- R_L ~ 1.15 Ω/cm
Printing experiment 30µm trench

IV Data

- Reduced shading results +0.2 mA Jsc gain for both pastes
- Small lost in FF, small gain in Voc
- Efficiency gain of ~ 0.1%
Experimental
- PERC precursors from pilot line of Hanwha Q Cells in Germany
- Paste: modification of Heraeus 9651B with adjusted glass chemistry
- Printing from two tapes (20 µm trench, 30 µm trench) performed at ISC Konstanz

Finger geometry (analyzed by laser scanning microscope):

- For 20 µm trench: fingers < 25 µm width with aspect ratio > 0.5
- For this paste, the specific **contact resistance rhoC reduces with smaller line width**
 (→ a detailed analysis of contact formation is presented by D. Rudolph at IEEE, Hawaii: “Influence of the paste volume on the contact formation in fine line metallization”)

- Increased Line Resistance RL is in good agreement with reduced cross section

- Paste laydown: *< 30 mg for PTP with 20µm trench and 112 fingers*
Printing experiment 20µm trench

IV Data

- Reduced shading results in +0.4 mA Jsc gain
- Loss in FF, small gain in Voc
- **Efficiency gain of ~0.15% for PTP printing from 20 µm trench**
Summary

- High Ag consumption could threaten sustainability of PV growth

- Simulation predicts efficiency gain for further line width reduction

- The contactless Pattern Transfer Printing (PTP) technology enables printing of very fine finger lines:
 - Line width < 25 µm, AR ~ 0.5
 - Laydown for 112 fingers < 30 mg

- Efficiency gain of 0.1% / 0.15% demonstrated for 30 µm / 20 µm trench geometry on high efficient PERC cells
Conclusion comparing ITRPV

- PTP technology can bring you significantly ahead of the ITRPV roadmap
- Samplings are possible at ISC Konstanz e.V.

From Markus Fischer, ITRPV 9th edition 2018 - report release and key findings
PV CellTech 2018, Penang
This work was funded under the European Solar.era-net framework as project 038 Refined PV. We thank the German Federal Ministry for Economic Affairs and Energy and to the Chief Scientist of the Israeli Ministry of Energy for their support.

Thank you for your attention